Extensions 1→N→G→Q→1 with N=C22×C6 and Q=D5

Direct product G=N×Q with N=C22×C6 and Q=D5
dρLabelID
D5×C22×C6120D5xC2^2xC6240,205

Semidirect products G=N:Q with N=C22×C6 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C22×C6)⋊1D5 = C6×C5⋊D4φ: D5/C5C2 ⊆ Aut C22×C6120(C2^2xC6):1D5240,164
(C22×C6)⋊2D5 = C2×C157D4φ: D5/C5C2 ⊆ Aut C22×C6120(C2^2xC6):2D5240,184
(C22×C6)⋊3D5 = C23×D15φ: D5/C5C2 ⊆ Aut C22×C6120(C2^2xC6):3D5240,207

Non-split extensions G=N.Q with N=C22×C6 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C22×C6).1D5 = C3×C23.D5φ: D5/C5C2 ⊆ Aut C22×C6120(C2^2xC6).1D5240,48
(C22×C6).2D5 = C30.38D4φ: D5/C5C2 ⊆ Aut C22×C6120(C2^2xC6).2D5240,80
(C22×C6).3D5 = C22×Dic15φ: D5/C5C2 ⊆ Aut C22×C6240(C2^2xC6).3D5240,183
(C22×C6).4D5 = C2×C6×Dic5central extension (φ=1)240(C2^2xC6).4D5240,163

׿
×
𝔽